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Abstract

An increasing emphasis on chemical process safety over the last two decades has led to the development and application of powerful risk
assessment tools. Hazard analysis and risk evaluation techniques have developed to the point where quantitatively meaningful risks can be
calculated for processes and plants. However, the results are typically presented in semi-quantitative “ranked list” or “categorical matrix”
formats, which are certainly useful but not optimal for making business decisions. A relatively new technique for performing valuation under
uncertainty, value at risk (VaR), has been developed in the financial world. VaR is a method of evaluating the probability of a gain or loss by a
complex venture, by examining the stochastic behavior of its components. We believe that combining quantitative risk assessment techniques
with VaR concepts will bridge the gap between engineers and scientists who determine process risk and business leaders and policy makers
who evaluate, manage, or regulate risk. We present a few basic examples of the application of VaR to hazard analysis in the chemical process
industry.
© 2004 Published by Elsevier B.V.
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1. Introduction

1.1. Background

Due to the inherent sensitivity of the chemical process in-
dustry (CPI) to the consequences of failure, chemical process
safety has been a major concern for some time[1]. Chemical
process quantitative risk assessment (CPQRA) identifies ar-
eas in operations, engineering, and management systems that
might be modified to reduce process risk. CPQRA deals with
both aspects of risk, namely likelihood and consequence.
Likelihood is typically estimated through some combina-
tion of historical data and fault/event tree analysis. Conse-
quence modeling generally consists of two parts; detailed
science models predict the parameters of incident-specific
events (e.g. gas release, explosion overpressure), and ef-
fect/mitigation models predict the final consequences on
people and the environment (natural and built). The prod-

∗ Corresponding author. Tel.:+1-979-862-4850.
E-mail address: D-Ford@chemail.tamu.edu (D.M. Ford).

uct of likelihood and consequence is a measure of risk.
Presently, CPQRA has developed to the point where quan-
titatively meaningful risks may be calculated for individual
processes and entire plants.

Obviously, implementing safety devices and procedures
to remove all risks in a chemical plant is not feasible. Thus,
an important part of a CPQRA analysis is prioritizing the
risks for appropriate action. The results are typically reported
in a likelihood-consequence matrix format, or perhaps in a
ranked list. While this semi-quantitative approach is useful,
we believe that CPQRA has progressed to a point where the
results may be presented in more detail and with more quan-
titative precision. Furthermore, they should be presented in a
comprehensive format that is useful to CPI management and
other policy makers. This is not an easy task, primarily due
to the inherently probabilistic nature of the problem. How-
ever, the rewards of such an approach would be substantial;
a more quantitative and coherent business case for process
safety would certainly result in a better-focused investment
by the CPI.

In this paper, we present a new approach for under-
standing, organizing, and packaging the results of CPQRA
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analyses. The approach is based on a technique, value at
risk (VaR), borrowed from the financial industry[2]; it will
provide a bridge between the engineers and scientists who
calculate process risk and the business leaders and policy
makers whoevaluate, manage, or regulate risk in a broader
context. VaR is a method of evaluating the probability of
a gain or loss by a complex venture, by examining the
stochastic behavior of its components. The framework is
firmly grounded in the theory of VaR, yet flexible enough
so that it may be:

• used at several different organizational levels (process,
plant, industry segment);

• integrated with other business risk concerns (operational,
market) so that complete and accurate cost-benefit deci-
sions may be made;

• implemented in software targeted for industrial risk pro-
fessionals;

• extended to other types of risk (environmental, societal)
and for use by other stakeholders (governmental agencies,
public interest groups).

The primary focus of this paper is to introduce the ap-
proach and demonstrate its use on case problems from the
CPQRA literature.

We note that VaR concepts have begun to appear in other
areas of process design research. For example, Barbaro
and Bagajewicz[3] have employed VaR in developing a
two-stage stochastic formulation for managing financial
risk in planning under uncertainty.

Fig. 1. Flow chart of the integration of VaR and CPQRA.

1.2. Organization

Section 2contains the theoretical development for com-
bining VaR and CPQRA.Section 3demonstrates the proce-
dure on two different example problems. The first example
is based on a single event tree and a simple damage valu-
ation index, with various layers of probabilistic complexity
sequentially added in. The second is closer to a real-world
example, using a hazard quantification index from the liter-
ature.Section 4contains conclusions and future directions.

2. Theoretical development

2.1. Value at risk

VaR is a method of evaluating the probability of a gain
or loss by a complex financial venture, by examining the
stochastic behavior of its components[2]. VaR approaches
generally involve a combination of likelihood estimation and
valuation: how likely is an event to happen, and what is the
financial impact on the portfolio? Quantification of both of
these aspects may involve sophisticated probabilistic anal-
yses. A major strength of the VaR technique is that it pro-
vides a total cost-benefit analysis of an entire portfolio in
terms of a single probability distribution function for value.
VaR itself is technically defined as the worst loss that is
expected in a portfolio, within a given confidence interval,
over a specified time period.
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The flexibility of the VaR approach (i.e., the ability to ac-
cept input from different events), combined with the com-
prehensive, straightforward presentation of results (i.e., the
use of a single probabilistic value function), makes it attrac-
tive for application to problems in CPQRA.

2.2. Integration of CPQRA and VaR

The diagram inFig. 1 shows how we envision the pro-
cedure. Traditional CPQRA tools are used to determine the
probabilities and consequences of undesired events associ-
ated with a plant or process. The consequences are passed to
a valuation model, where they are assigned values (or distri-
butions of values). The valuation may be done in monetary
terms, or with a customized index appropriate to the partic-
ular situation or stakeholders. For undesired events, the val-
ues will typically be negative by convention. The results of
the CPQRA and valuation are sent to the VaR engine, where
they are combined to generate a single VaR probability dis-
tribution function representing process/plant value.

The VaR approach is capable of handling complex sit-
uations in which the fundamental stochastic events are re-
lated in a nonlinear fashion within the portfolio; this level of
complexity typically requires simulation using Monte Carlo
techniques[2]. This level of treatment is not required for the
simple example situations described below, but it might be
for many real-world problems in the CPI.

We also note that the cumulative versions of our VaR
probability curves are somewhat analogous to the frequency-
number, orF–N, curves often used to describe societal risk
[1]. F–N curves show the cumulative frequency of undesired
events with respect to the number of individuals affected

Fig. 2. Event tree for LPG leak problem.

(e.g. killed, injured, exposed). Our cumulative VaR curves
represent the cumulative frequency of experiencing a loss
with respect to the damage value. In this paper, we consider
damage value in an abstract sense and do not relate it to
human life.

3. Application examples

3.1. First example problem: leak from LPG storage tank

This example problem applies a VaR analysis to a problem
illustrated in chapter 3 of ref.[1]. The possible events and
outcomes, and their frequencies, are taken directly from that
example. We created the damage index described below,
specifically for illustrative purposes related to this example.
The values of the damage index for the different possible
outcomes were assigned based on our judgment.

3.1.1. Scenario description
In this example, we assume that a fault tree analysis has

identified the potential problem of a large leakage from an
isolated LPG storage tank and estimated the frequency with
which this problem is expected to occur. A further event tree
analysis, as shown inFig. 2, yields 10 possible scenarios
comprised of six distinct outcomes. The six outcomes and
their associated frequencies are summarized inTable 1(note
that the frequency for UVCE has been reduced to bring the
total frequency to 100× 10−6, for convenience).

Detailed descriptions of the possible outcomes may be
found in ref.[1], but we briefly outline them here. A boiling
liquid expanding vapor explosion (BLEVE) occurs when a



20 J.S. Fang et al. / Journal of Hazardous Materials 115 (2004) 17–26

Table 1
Data for the LPG leak problem

Incident Damage
index

Uncertainty Frequency
(10−6 per year)

BLEVE 25 7.5 2
Flash fire 20 7.5 32.4
Flash fire and bleve 30 10 8.1
UVCE 40 10 40.5
Local thermal hazard 10 5 8
Safe dispersal 3 1 9

pressurized vessel suddenly fails and its contents flash to the
atmosphere, producing a pressure wave. If the expanding
substance is also flammable, there is the additional danger of
a flash fire. An unconfined vapor cloud explosion (UVCE)
occurs when a drifting cloud of flammable vapor ignites and
explodes, producing a shock wave. Such a cloud may also
ignite but not produce an overpressure wave, thus generating
a flash fire. A local thermal hazard will occur if the release
burns locally, without flashing back into the tank to cause
an explosion. Of course, safe dispersal is the most desirable
of these undesirable events, but even this outcome has a
negative value associated with a shutdown of the facility.

The event tree supplies the possible outcomes and fre-
quencies. In order to apply the VaR analysis, we also need
values for these outcomes. We have done this using a dam-
age index that we created, somewhat arbitrarily, for this ex-
ample.

3.1.2. Point system for event damage
We perform our valuation based on the following damage

index scale.

0–10 points Minor damage to the local built
environment; rare minor injuries

10–20 points Significant damage to the local built
environment; common minor injuries;
rare major injuries

20–30 points Severe damage to the local built
environment; significant damage to the
surrounding built environment; common
minor and major injuries; at least one
fatality is likely

30–40 points Severe damage to the local and
surrounding built environment; significant
damage to the natural environment; many
minor and major injuries; several fatalities

40–50 points Catastrophic damage to the local and
surrounding built environment;
permanent damage to the natural
environment; many minor and major
injuries; dozens of fatalities

Based on this scale and our judgment of the damage po-
tentials of the various outcomes, we have assigned damage
points to the outcomes, as shown inTable 1. We have also
assigned an “uncertainty” to the damage points, which will

be used and described later (Sections 3.1.4–3.1.6); generally,
the uncertainties represent underlying stochastic processes
specific to the events but beyond the desired level of model
detail.

Note that we will report the negative of the point value
when referring to the damage index, so that negative num-
bers with higher absolute values indicate worse damage.

3.1.3. VaR for the case of no uncertainty in event damage
If there is no uncertainty in the damage associated with

any outcome, then the VaR curve is actually a discrete prob-
ability mass function as opposed to a continuous probability
density function. This function is shown in the simple bar
graph ofFig. 3. Each event contributes to the VaR at exactly
one value of the damage index, with a frequency determined
by the event tree. We do not show the bar for the outcome
of zero damage, which has a frequency of 0.9999 per year
(assuming that our other outcomes cover all other possibili-
ties), because it would be well off the scale of the chart. The
cumulative probability mass function is shown inFig. 4.

In the financial world, the actual “value at risk” is defined
as the value that sets some lower confidence limit on the
VaR probability function. For example, say that the valuev

represents a lower limit where 95% of the probability lies
above it. Then we can state that we are 95% certain that
we will lose no more thanv over the time horizon used to
construct the probability curve, or equivalently, “the value
at risk is v.” Based on the data inFig. 4, we may make
statements such as the following.

• We are 99.99% certain that we will suffer no damage from
an LPG storage tank leak over the next year.

• We are 99.995% certain that we will suffer a damage value
of no more than 30 points from an LPG storage tank leak
over the next year.

• Over a 1-year time horizon, to a 99.995% confidence level,
our value at risk from an LPG storage tank leak is 30
points.

The last two statements are equivalent.
The main assumptions used to generateFigs. 3 and 4are

that (1) the fault tree prediction of 10−4 LPG storage tank
failures per year is accurate, (2) the event tree captures all
possible failure outcomes and their associated probabilities,
and (3) a single number is sufficient to capture the damage
effects of each outcome. The next few sections address the
relaxation of the third assumption.

3.1.4. VaR for the case of uniform uncertainty in event
damage

In reality, many failure outcomes will result in a distribu-
tion of possible damage effects, due to stochastic variables
such as atmospheric conditions or human factors. To cap-
ture the random nature of these processes, damage effects
are often modeled as probabilistic functions instead of sin-
gle values.
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Fig. 3. Probability mass function for the LPG leak (no uncertainty).

The simplest approach is to assume a uniform distribution
of frequency (or equivalently, probability) across some dam-
age range, for each outcome. We demonstrate this approach
using the numbers given inTable 1for the LPG storage tank
scenario. The uncertainties of the damage events in the Ta-
ble are used as upper and lower bounds on the distributions,
with the frequency being constant between them and zero
elsewhere, and the total frequency (area under the curve)
being equal to the frequency given in the Table. For exam-
ple, the damage index associated with the “safe dispersal”
outcome ranges from 2 to 4, with a uniform probability den-
sity of 4.5× 10−6 events per year per damage point, yield-
ing a total (integrated) frequency of 9.0× 10−6 events per
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Fig. 4. Cumulative mass function for the LPG leak (no uncertainty).

year. Fig. 5 shows the resulting VaR curve. With the use
of probability distributions to describe the damage effects,
the curve becomes a probability density function, instead of
a probability mass function. The curves for different indi-
vidual outcomes now overlap in certain regions of damage
index value and are combined additively in those regions.
This additivity is justified because the event tree produces
the outcomes as a set of complementary events, in a proba-
bilistic sense.The corresponding cumulative curve is shown
in Fig. 6. The effects of the sharp discontinuities in proba-
bility that exist at the edges of the uniform distributions are
evident in the discontinuities of the slope at several locations
in Fig. 6.
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Fig. 5. Probability density function for the LPG leak (uniform uncertainty).

3.1.5. VaR for the case of Gaussian uncertainty in event
damage

In this case, we assume that the damage effects are dis-
tributed normally. The uncertainties listed inTable 1 are
now assumed to be the standard deviations in the Gaussian
distributions. For clarity, the entire point scale for damage
(Section 3.1.2) has been increased by a factor of 10 with
new damage scores for each event. These new scores are re-
flected inTable 2. As with the uniform distributions, each
Gaussian is normalized so that the total area under the curve
equals the frequency given inTable 1. The probability den-

Fig. 6. Cumulative distribution function for the LPG leak (uniform uncertainty).

sity function is shown inFig. 7 and the corresponding cu-
mulative function is shown inFig. 8.

With the Gaussian curves, both probability functions are
now smoother. One problem with the normal distribution
is that it has infinite range, which may have two undesir-
able side effects in the present analysis. First, all damage
events make some contribution (albeit small) to the positive
side of the value curve, which is not sensible. Furthermore,
even minor damage events make some contribution (al-
beit small) to extreme damage values, which is also not
sensible.
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Table 2
Revised data for the LPG leak problem

Incident Damage
index

Uncertainty Frequency
(10−6 per year)

BLEVE −200 25 2
Flash fire −150 15 32.4
Flash fire and bleve −275 20 8.1
UVCE −425 20 40.5
Local thermal hazard −30 5 8
Safe dispersal −3 1 9

3.1.6. VaR for the case of beta uncertainty in event damage
An obvious fix to the problem mentioned above is to use

a probability function with limited range. For this purpose,
we employed the beta distribution, which has both lower
and upper bounds. The parametersα and β for the beta
distribution were chosen to match the averages and standard
deviations (uncertainties) given inTable 1.

The density function is shown inFig. 9, while the cu-
mulative function is shown inFig. 10. In theory, this is
probably the best representation of the results, in that the
individual damage events are bounded appropriately. In
practice, it does not appear to be much different from the
Gaussian results, on this scale.

3.2. Second example problem: loading of chlorine rail
tank car

This example problem applies VaR analysis to a problem
illustrated in chapter 8 of ref. [1]. The representative out-
comes and their frequencies are taken directly from that ref-

Fig. 7. Probability density function for the LPG leak (Gaussian uncertainty).

erence. The damage index used for this example was created
by Khan and Abbasi[4,5].

3.2.1. Scenario description
In this example, we assume that an incident identification

analysis has generated a set of representative events associ-
ated with a chlorine tank car loading facility, and we further
assume that a combination of historical data and fault tree
analysis has been used to estimate their frequency. The three
representative outcomes and their associated frequencies are
summarized inTable 3. Another parameter that affects the
consequences of the incidents is prevailing wind conditions.
We will assume eight possible wind directions that are given
an equal probability of occurring.

Detailed descriptions of the possible incidents may be
found in ref.[1], but we briefly outline them here. The main
elements of the facility are a storage tank, a rail tank car, and
associated transfer equipment. A small leak of liquid chlo-
rine (∼2 kg/s for 10 min) might arise from a defective hose
or valve, or an impact to a transfer pipe. A small vapor leak
(∼0.2 kg/s for 20 min) might arise from the same sources.
A large vapor leak (∼2 kg/s for 60 min) might occur due to
a lifting of the relief valve under the stress caused by an
external fire. In all three cases, the primary concern is the
toxic effects of the released chlorine; the loading facility is
located 100 m west of a residential area 400 m square, con-
taining a uniformly distributed population of 400 persons.

3.2.2. Point scale for damage events
We use the accident hazard index (AHI) due to Khan and

Abbasi[4,5]. While their approach provides a means to rank
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Fig. 8. Cumulative distribution function for the LPG leak (Gaussian uncertainty).

three types of damage, namely thermal, mechanical (blast),
and toxic, we will focus on toxic damage for this example
problem of chlorine release. Khan and Abbasi’s procedure
for determining the contribution to the AHI of a toxic load
involves the following steps. First, a parameterR is estimated
from

R =
(

q

LC50

)1/3

(1)

where LC50 is the concentration (kg/m3) of chlorine vapor
that is expected to be lethal to 50% of the exposed population
andq is the total quantity (kg) released. The value ofR is

Fig. 9. Probability density function for the LPG leak (beta uncertainty).

used as input to a function that produces a dimensionless
severity factorX. If the event is completely contained in
the process area, this severity factorX is then the AHI. If
an external effect (such as harm to population areas) is a
concern, a population impact factor must be integrated with
the severity factorX to produce the final AHI.

In this example, the direction of the prevailing wind dur-
ing a release event is an extra stochastic factor. If the wind
carries the chlorine vapor into the nearby residential area,
an impact factor must be included. We assume that this
will happen when the wind blows towards the northeast,
east, and southeast (a total of 37.5% of the time). There
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Table 3
Data for the chlorine rail car problem

Chlorine potential accidents Estimated frequency (per year) Gas release rate (kg/s) Total gas release (kg) LC50 (kg/m3)

Liquid leak 5.80E−04 2.7 1620 6.81E−04
Vapor leak 6.60E−04 0.26 156 6.81E−04
Relief valve discharge 3.00E−06 2.4 8640 1.67E−03

Fig. 10. Cumulative distribution function for the LPG leak (beta uncertainty).

are now two possibilities for the AHI associated with each
event, one with the population impact factor and one with-
out. The population impact factor is derived from a special
formula derived from Khan and Abbasi; the input parame-
ters are population density, which is the number of people
(thousands) per square kilometer[4,5].
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Fig. 11. Probability mass function for the chlorine rail car problem.

3.2.3. Analysis of scenario
Since no uncertainty in the hazard index was available,

we carried out a simple probability mass function analysis
for the VaR plot, as inSection 3.1.3.

The probability mass distribution function featuring the
three unwanted events (with and without the population
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Fig. 12. Cumulative distribution function for the chlorine rail car problem.

damage input) is shown inFig. 11. The relief valve discharge
had the highest hazard index, followed by the vapor and
liquid leaks. The vapor indices had the greatest frequency.
However, the wind did not affect the vapor leak’s AHI, be-
cause the rate of gas release (∼0.2 kg/s) was too small to be
a hazard to a residential population 100 m away. The result-
ing probability mass function plot is shown below inFig. 11.
The cumulative mass density plot is shown inFig. 12.

The following VaR statements may be made from the data.

• Over a 1-year time horizon, to a 99.9% confidence level,
our value at risk from toxic leaks at the tank car facility
is 2.82 on the AHI.

• Over a 1-year time horizon, to a 99.99% confidence level,
our value at risk from toxic leaks at the tank car facility
is 5.89 on the AHI.

4. Conclusions and future directions

We discussed how VaR concepts from finance might be
used to make a better business case for process safety in
the CPI. We demonstrated the procedure on two example
problems from the CPQRA literature, creating VaR curves
based on valuation with different damage/hazard indices
(literature-based and customized). The effects of uncertainty
in damage associated with possible events were included.

Future work will involve application to larger-scale,
real-world problems, perhaps using an automated tool.

We will develop more complex and realistic approaches
to valuation, including the use of different hazard indices
(e.g. Mond, Dow) and a monetary scale. Other technical
improvements will include the modeling of uncertainty in
event frequency, as well as consequence.
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